Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Photochem Photobiol Sci ; 22(6): 1323-1340, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2237252

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been on a rampage for more than two years. Vaccines in combination with neutralizing antibodies (NAbs) against SARS-CoV-2 carry great hope in the treatment and final elimination of coronavirus disease 2019 (COVID-19). However, the relentless emergence of variants of concern (VOC), including the most recent Omicron variants, presses for novel measures to counter these variants that often show immune evasion. Hereby we developed a targeted photodynamic approach to neutralize SARS-CoV-2 by engineering a genetically encoded photosensitizer (SOPP3) to a diverse list of antibodies targeting the wild-type (WT) spike protein, including human antibodies isolated from a 2003 Severe acute respiratory syndrome (SARS) patient, potent monomeric and multimeric nanobodies targeting receptor-binding domain (RBD), and non-neutralizing antibodies (non-NAbs) targeting the more conserved N-terminal domain (NTD). As confirmed by pseudovirus neutralization assay, this targeted photodynamic approach significantly increased the efficacy of these antibodies, especially that of non-NAbs, against not only the WT but also the Delta strain and the heavily immune escape Omicron strain (BA.1). Subsequent measurement of infrared phosphorescence at 1270 nm confirmed the generation of singlet oxygen (1O2) in the photodynamic process. Mass spectroscopy assay uncovered amino acids in the spike protein targeted by 1O2. Impressively, Y145 and H146 form an oxidization "hotspot", which overlaps with the antigenic "supersite" in NTD. Taken together, our study established a targeted photodynamic approach against the SARS-CoV-2 virus and provided mechanistic insights into the photodynamic modification of protein molecules mediated by 1O2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Singlet Oxygen , Spike Glycoprotein, Coronavirus
2.
Int J Infect Dis ; 122: 285-294, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1867239

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the dose-response relationship of admission fasting glucose (FBG) with corona virus disease 2019 (COVID-19) mortality and to further evaluate potential interactions of hyperglycemia with inflammation and hypercoagulation on COVID-19 outcomes. METHODS: This retrospective study included 2555 consecutively hospitalized patients with COVID-19, until death or discharge, in Wuhan Union hospital between January 1 and April 9, 2020. The poor early outcomes included admission to intensive care unit, intubation, and deaths occurring within 28 days. We used splines nested in Cox regression to visualize dose-response associations and generalized additive models to fit three-dimensional (3D) trend plots for joint effects of FBG with markers of inflammation and coagulation. RESULTS: J-shaped associations existed between hospitalized mortality or poor early outcomes and FBG with a nadir at 5 mmol/L, which were more evident in women. 3D plots demonstrated significant joint effect trends, and patients with hyperglycemia and high neutrophil-lymphocyte ratio, C-reactive protein, lactate dehydrogenase, procalcitonin, d-dimer, and interleukin-6 had 7.4-25.3-fold risks; the proportions of joint associations attributed to additive interactions reached 30% to 54%. CONCLUSIONS: FBG was associated with hospitalized mortality and poor early outcomes in a J-shaped manner, and a combination of hyperglycemia, inflammation, hypercoagulation, and cytokines conferred a dramatically higher risk.


Subject(s)
COVID-19 , Hyperglycemia , Blood Glucose/metabolism , COVID-19/complications , Cytokines , Fasting , Female , Glucose , Humans , Hyperglycemia/complications , Inflammation/complications , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL